Copied to
clipboard

?

G = C42.116D10order 320 = 26·5

116th non-split extension by C42 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.116D10, C10.1052+ (1+4), (C4×D4)⋊24D5, (D4×C20)⋊26C2, (C4×D20)⋊33C2, C207D412C2, C42D2016C2, C20⋊D410C2, C202D410C2, C4⋊C4.287D10, D10⋊D411C2, (C2×D4).223D10, C4.46(C4○D20), C42⋊D515C2, C4.Dic1016C2, D10.12D49C2, C20.113(C4○D4), (C2×C20).164C23, (C4×C20).160C22, (C2×C10).106C24, C22⋊C4.118D10, (C22×C4).214D10, C2.18(D48D10), C2.24(D46D10), (D4×C10).265C22, (C2×D20).268C22, C23.23D104C2, C4⋊Dic5.364C22, (C22×C20).83C22, (C2×Dic5).47C23, (C4×Dic5).86C22, C10.D4.7C22, (C22×D5).40C23, C23.103(C22×D5), C22.131(C23×D5), C23.D5.16C22, D10⋊C4.88C22, (C22×C10).176C23, C52(C22.34C24), C10.48(C2×C4○D4), C2.55(C2×C4○D20), (C2×C4×D5).254C22, (C5×C4⋊C4).334C22, (C2×C4).581(C22×D5), (C2×C5⋊D4).19C22, (C5×C22⋊C4).129C22, SmallGroup(320,1234)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C42.116D10
C1C5C10C2×C10C22×D5C2×C4×D5D10.12D4 — C42.116D10
C5C2×C10 — C42.116D10

Subgroups: 958 in 240 conjugacy classes, 95 normal (43 characteristic)
C1, C2 [×3], C2 [×5], C4 [×2], C4 [×9], C22, C22 [×15], C5, C2×C4 [×3], C2×C4 [×2], C2×C4 [×11], D4 [×12], C23 [×2], C23 [×3], D5 [×3], C10 [×3], C10 [×2], C42, C42, C22⋊C4 [×2], C22⋊C4 [×8], C4⋊C4, C4⋊C4 [×7], C22×C4 [×2], C22×C4 [×3], C2×D4, C2×D4 [×9], Dic5 [×5], C20 [×2], C20 [×4], D10 [×9], C2×C10, C2×C10 [×6], C42⋊C2, C4×D4, C4×D4, C4⋊D4 [×6], C22.D4 [×4], C42.C2, C41D4, C4×D5 [×4], D20 [×4], C2×Dic5 [×3], C2×Dic5 [×2], C5⋊D4 [×6], C2×C20 [×3], C2×C20 [×2], C2×C20 [×2], C5×D4 [×2], C22×D5, C22×D5 [×2], C22×C10 [×2], C22.34C24, C4×Dic5, C10.D4 [×2], C10.D4 [×2], C4⋊Dic5, C4⋊Dic5 [×2], D10⋊C4 [×2], D10⋊C4 [×4], C23.D5 [×2], C4×C20, C5×C22⋊C4 [×2], C5×C4⋊C4, C2×C4×D5, C2×C4×D5 [×2], C2×D20, C2×D20 [×2], C2×C5⋊D4 [×6], C22×C20 [×2], D4×C10, C42⋊D5, C4×D20, D10.12D4 [×2], D10⋊D4 [×2], C4.Dic10, C42D20, C23.23D10 [×2], C207D4 [×2], C202D4, C20⋊D4, D4×C20, C42.116D10

Quotients:
C1, C2 [×15], C22 [×35], C23 [×15], D5, C4○D4 [×2], C24, D10 [×7], C2×C4○D4, 2+ (1+4) [×2], C22×D5 [×7], C22.34C24, C4○D20 [×2], C23×D5, C2×C4○D20, D46D10, D48D10, C42.116D10

Generators and relations
 G = < a,b,c,d | a4=b4=c10=1, d2=a2, ab=ba, cac-1=dad-1=a-1b2, bc=cb, dbd-1=a2b-1, dcd-1=a2c-1 >

Smallest permutation representation
On 160 points
Generators in S160
(1 110 63 114)(2 144 64 90)(3 102 65 116)(4 146 66 82)(5 104 67 118)(6 148 68 84)(7 106 69 120)(8 150 70 86)(9 108 61 112)(10 142 62 88)(11 43 97 129)(12 151 98 135)(13 45 99 121)(14 153 100 137)(15 47 91 123)(16 155 92 139)(17 49 93 125)(18 157 94 131)(19 41 95 127)(20 159 96 133)(21 160 80 134)(22 44 71 130)(23 152 72 136)(24 46 73 122)(25 154 74 138)(26 48 75 124)(27 156 76 140)(28 50 77 126)(29 158 78 132)(30 42 79 128)(31 115 58 101)(32 81 59 145)(33 117 60 103)(34 83 51 147)(35 119 52 105)(36 85 53 149)(37 111 54 107)(38 87 55 141)(39 113 56 109)(40 89 57 143)
(1 100 40 24)(2 91 31 25)(3 92 32 26)(4 93 33 27)(5 94 34 28)(6 95 35 29)(7 96 36 30)(8 97 37 21)(9 98 38 22)(10 99 39 23)(11 54 80 70)(12 55 71 61)(13 56 72 62)(14 57 73 63)(15 58 74 64)(16 59 75 65)(17 60 76 66)(18 51 77 67)(19 52 78 68)(20 53 79 69)(41 105 132 84)(42 106 133 85)(43 107 134 86)(44 108 135 87)(45 109 136 88)(46 110 137 89)(47 101 138 90)(48 102 139 81)(49 103 140 82)(50 104 131 83)(111 160 150 129)(112 151 141 130)(113 152 142 121)(114 153 143 122)(115 154 144 123)(116 155 145 124)(117 156 146 125)(118 157 147 126)(119 158 148 127)(120 159 149 128)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 121 63 45)(2 44 64 130)(3 129 65 43)(4 42 66 128)(5 127 67 41)(6 50 68 126)(7 125 69 49)(8 48 70 124)(9 123 61 47)(10 46 62 122)(11 81 97 145)(12 144 98 90)(13 89 99 143)(14 142 100 88)(15 87 91 141)(16 150 92 86)(17 85 93 149)(18 148 94 84)(19 83 95 147)(20 146 96 82)(21 116 80 102)(22 101 71 115)(23 114 72 110)(24 109 73 113)(25 112 74 108)(26 107 75 111)(27 120 76 106)(28 105 77 119)(29 118 78 104)(30 103 79 117)(31 135 58 151)(32 160 59 134)(33 133 60 159)(34 158 51 132)(35 131 52 157)(36 156 53 140)(37 139 54 155)(38 154 55 138)(39 137 56 153)(40 152 57 136)

G:=sub<Sym(160)| (1,110,63,114)(2,144,64,90)(3,102,65,116)(4,146,66,82)(5,104,67,118)(6,148,68,84)(7,106,69,120)(8,150,70,86)(9,108,61,112)(10,142,62,88)(11,43,97,129)(12,151,98,135)(13,45,99,121)(14,153,100,137)(15,47,91,123)(16,155,92,139)(17,49,93,125)(18,157,94,131)(19,41,95,127)(20,159,96,133)(21,160,80,134)(22,44,71,130)(23,152,72,136)(24,46,73,122)(25,154,74,138)(26,48,75,124)(27,156,76,140)(28,50,77,126)(29,158,78,132)(30,42,79,128)(31,115,58,101)(32,81,59,145)(33,117,60,103)(34,83,51,147)(35,119,52,105)(36,85,53,149)(37,111,54,107)(38,87,55,141)(39,113,56,109)(40,89,57,143), (1,100,40,24)(2,91,31,25)(3,92,32,26)(4,93,33,27)(5,94,34,28)(6,95,35,29)(7,96,36,30)(8,97,37,21)(9,98,38,22)(10,99,39,23)(11,54,80,70)(12,55,71,61)(13,56,72,62)(14,57,73,63)(15,58,74,64)(16,59,75,65)(17,60,76,66)(18,51,77,67)(19,52,78,68)(20,53,79,69)(41,105,132,84)(42,106,133,85)(43,107,134,86)(44,108,135,87)(45,109,136,88)(46,110,137,89)(47,101,138,90)(48,102,139,81)(49,103,140,82)(50,104,131,83)(111,160,150,129)(112,151,141,130)(113,152,142,121)(114,153,143,122)(115,154,144,123)(116,155,145,124)(117,156,146,125)(118,157,147,126)(119,158,148,127)(120,159,149,128), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,121,63,45)(2,44,64,130)(3,129,65,43)(4,42,66,128)(5,127,67,41)(6,50,68,126)(7,125,69,49)(8,48,70,124)(9,123,61,47)(10,46,62,122)(11,81,97,145)(12,144,98,90)(13,89,99,143)(14,142,100,88)(15,87,91,141)(16,150,92,86)(17,85,93,149)(18,148,94,84)(19,83,95,147)(20,146,96,82)(21,116,80,102)(22,101,71,115)(23,114,72,110)(24,109,73,113)(25,112,74,108)(26,107,75,111)(27,120,76,106)(28,105,77,119)(29,118,78,104)(30,103,79,117)(31,135,58,151)(32,160,59,134)(33,133,60,159)(34,158,51,132)(35,131,52,157)(36,156,53,140)(37,139,54,155)(38,154,55,138)(39,137,56,153)(40,152,57,136)>;

G:=Group( (1,110,63,114)(2,144,64,90)(3,102,65,116)(4,146,66,82)(5,104,67,118)(6,148,68,84)(7,106,69,120)(8,150,70,86)(9,108,61,112)(10,142,62,88)(11,43,97,129)(12,151,98,135)(13,45,99,121)(14,153,100,137)(15,47,91,123)(16,155,92,139)(17,49,93,125)(18,157,94,131)(19,41,95,127)(20,159,96,133)(21,160,80,134)(22,44,71,130)(23,152,72,136)(24,46,73,122)(25,154,74,138)(26,48,75,124)(27,156,76,140)(28,50,77,126)(29,158,78,132)(30,42,79,128)(31,115,58,101)(32,81,59,145)(33,117,60,103)(34,83,51,147)(35,119,52,105)(36,85,53,149)(37,111,54,107)(38,87,55,141)(39,113,56,109)(40,89,57,143), (1,100,40,24)(2,91,31,25)(3,92,32,26)(4,93,33,27)(5,94,34,28)(6,95,35,29)(7,96,36,30)(8,97,37,21)(9,98,38,22)(10,99,39,23)(11,54,80,70)(12,55,71,61)(13,56,72,62)(14,57,73,63)(15,58,74,64)(16,59,75,65)(17,60,76,66)(18,51,77,67)(19,52,78,68)(20,53,79,69)(41,105,132,84)(42,106,133,85)(43,107,134,86)(44,108,135,87)(45,109,136,88)(46,110,137,89)(47,101,138,90)(48,102,139,81)(49,103,140,82)(50,104,131,83)(111,160,150,129)(112,151,141,130)(113,152,142,121)(114,153,143,122)(115,154,144,123)(116,155,145,124)(117,156,146,125)(118,157,147,126)(119,158,148,127)(120,159,149,128), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,121,63,45)(2,44,64,130)(3,129,65,43)(4,42,66,128)(5,127,67,41)(6,50,68,126)(7,125,69,49)(8,48,70,124)(9,123,61,47)(10,46,62,122)(11,81,97,145)(12,144,98,90)(13,89,99,143)(14,142,100,88)(15,87,91,141)(16,150,92,86)(17,85,93,149)(18,148,94,84)(19,83,95,147)(20,146,96,82)(21,116,80,102)(22,101,71,115)(23,114,72,110)(24,109,73,113)(25,112,74,108)(26,107,75,111)(27,120,76,106)(28,105,77,119)(29,118,78,104)(30,103,79,117)(31,135,58,151)(32,160,59,134)(33,133,60,159)(34,158,51,132)(35,131,52,157)(36,156,53,140)(37,139,54,155)(38,154,55,138)(39,137,56,153)(40,152,57,136) );

G=PermutationGroup([(1,110,63,114),(2,144,64,90),(3,102,65,116),(4,146,66,82),(5,104,67,118),(6,148,68,84),(7,106,69,120),(8,150,70,86),(9,108,61,112),(10,142,62,88),(11,43,97,129),(12,151,98,135),(13,45,99,121),(14,153,100,137),(15,47,91,123),(16,155,92,139),(17,49,93,125),(18,157,94,131),(19,41,95,127),(20,159,96,133),(21,160,80,134),(22,44,71,130),(23,152,72,136),(24,46,73,122),(25,154,74,138),(26,48,75,124),(27,156,76,140),(28,50,77,126),(29,158,78,132),(30,42,79,128),(31,115,58,101),(32,81,59,145),(33,117,60,103),(34,83,51,147),(35,119,52,105),(36,85,53,149),(37,111,54,107),(38,87,55,141),(39,113,56,109),(40,89,57,143)], [(1,100,40,24),(2,91,31,25),(3,92,32,26),(4,93,33,27),(5,94,34,28),(6,95,35,29),(7,96,36,30),(8,97,37,21),(9,98,38,22),(10,99,39,23),(11,54,80,70),(12,55,71,61),(13,56,72,62),(14,57,73,63),(15,58,74,64),(16,59,75,65),(17,60,76,66),(18,51,77,67),(19,52,78,68),(20,53,79,69),(41,105,132,84),(42,106,133,85),(43,107,134,86),(44,108,135,87),(45,109,136,88),(46,110,137,89),(47,101,138,90),(48,102,139,81),(49,103,140,82),(50,104,131,83),(111,160,150,129),(112,151,141,130),(113,152,142,121),(114,153,143,122),(115,154,144,123),(116,155,145,124),(117,156,146,125),(118,157,147,126),(119,158,148,127),(120,159,149,128)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,121,63,45),(2,44,64,130),(3,129,65,43),(4,42,66,128),(5,127,67,41),(6,50,68,126),(7,125,69,49),(8,48,70,124),(9,123,61,47),(10,46,62,122),(11,81,97,145),(12,144,98,90),(13,89,99,143),(14,142,100,88),(15,87,91,141),(16,150,92,86),(17,85,93,149),(18,148,94,84),(19,83,95,147),(20,146,96,82),(21,116,80,102),(22,101,71,115),(23,114,72,110),(24,109,73,113),(25,112,74,108),(26,107,75,111),(27,120,76,106),(28,105,77,119),(29,118,78,104),(30,103,79,117),(31,135,58,151),(32,160,59,134),(33,133,60,159),(34,158,51,132),(35,131,52,157),(36,156,53,140),(37,139,54,155),(38,154,55,138),(39,137,56,153),(40,152,57,136)])

Matrix representation G ⊆ GL6(𝔽41)

3200000
0320000
0030090
0003009
00320110
00032011
,
3200000
0320000
00244000
0011700
00002440
0000117
,
17390000
21240000
0000407
0000347
0040700
0034700
,
17390000
22240000
0014113323
00272788
008182730
0033331414

G:=sub<GL(6,GF(41))| [32,0,0,0,0,0,0,32,0,0,0,0,0,0,30,0,32,0,0,0,0,30,0,32,0,0,9,0,11,0,0,0,0,9,0,11],[32,0,0,0,0,0,0,32,0,0,0,0,0,0,24,1,0,0,0,0,40,17,0,0,0,0,0,0,24,1,0,0,0,0,40,17],[17,21,0,0,0,0,39,24,0,0,0,0,0,0,0,0,40,34,0,0,0,0,7,7,0,0,40,34,0,0,0,0,7,7,0,0],[17,22,0,0,0,0,39,24,0,0,0,0,0,0,14,27,8,33,0,0,11,27,18,33,0,0,33,8,27,14,0,0,23,8,30,14] >;

62 conjugacy classes

class 1 2A2B2C2D2E2F2G2H4A···4F4G4H4I···4M5A5B10A···10F10G···10N20A···20H20I···20X
order1222222224···4444···45510···1010···1020···2020···20
size1111442020202···24420···20222···24···42···24···4

62 irreducible representations

dim11111111111122222222444
type++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2D5C4○D4D10D10D10D10D10C4○D202+ (1+4)D46D10D48D10
kernelC42.116D10C42⋊D5C4×D20D10.12D4D10⋊D4C4.Dic10C42D20C23.23D10C207D4C202D4C20⋊D4D4×C20C4×D4C20C42C22⋊C4C4⋊C4C22×C4C2×D4C4C10C2C2
# reps111221122111242424216244

In GAP, Magma, Sage, TeX

C_4^2._{116}D_{10}
% in TeX

G:=Group("C4^2.116D10");
// GroupNames label

G:=SmallGroup(320,1234);
// by ID

G=gap.SmallGroup(320,1234);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,758,219,675,192,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^10=1,d^2=a^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1*b^2,b*c=c*b,d*b*d^-1=a^2*b^-1,d*c*d^-1=a^2*c^-1>;
// generators/relations

׿
×
𝔽